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LONG-TERM GOALS 
 
The long-term goal of this project is to predict the radiative properties of the marine atmosphere based 
on aerosol and cloud properties. 
 
OBJECTIVES 
 
The objective of the project is to improve our understanding of the role of aerosols in the Marine 
Boundary Layer and our ability to simulate marine stratocumulus clouds as a function of aerosol 
properties and the large-scale meterology. 
 
APPROACH 
 
The proposed research consists of laboratory, aircraft experiment, and modeling studies that address 
the hygroscopic properties of aerosols and aerosol-cloud relationships in marine stratocumulus (MSc) 
clouds.  A CIRPAS Twin Otter field experiment took place in July-August 2011 over the eastern 
Pacific Ocean off the coast of Monterey, CA.  That experiment addressed the response of MSc to 
aerosol perturbations, in collaboration with Professors Bruce Albrecht of the University of Miami, 
Armin Sorooshian of the University of Arizona, and Lynn Russell of UCSD.  (Since field experiments  
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generally need an acronym, we designated this experiment as the Eastern Pacific Emitted Aerosol 
Cloud Experiment, E-PEACE.) 
 
We will carry out further development and evaluation of aerosol-cloud modeling in the marine 
boundary layer.  Much work has been carried out directed at understanding the response of marine 
stratocumulus to perturbations in marine aerosols, including large eddy simulation (LES) and field 
measurements, the latter including Twin Otter missions such as MASE I and MASE II and those 
involving other platforms such as DYCOMS and VOCALS, going back to the original MAST 
campaign.  The MAST mission was the first to systematically probe the cloud properties in ship 
tracks, which have continued to serve as a well-defined example of marine aerosol-cloud perturbations.  
The aircraft payload has advanced considerably beyond the original MAST experiment, now 
comprising an aerosol mass spectrometer, CCN spectrometer, soot photometer, photoacoustic 
spectrometer, and phase doppler interferometer.  It is now possible to fully characterize the aerosol 
physical, chemical, and optical properties.  Important theoretical work remains to be done to fully 
understand aerosol-cloud relationships in marine stratocumulus.  In addition, most of the cloud 
microphysical modeling done independently or in conjunction with field missions has yet to be 
reflected in atmospheric models.  We will carry out microphysical modeling and LES studies with the 
goal of deriving treatments appropriate for atmospheric models.  The July-August 2011 Twin Otter 
field experiment was focused on marine aerosol-cloud measurements.  These will involve cloud 
microphysics closure, which will assess the extent to which model prediction of cloud droplet number 
concentration, drizzle, and cloud thickness agree with those measured. 
 
Since the experiment just ended a few weeks ago, results will be given in next year’s annual report.  
Table 1 lists the flights and instrument performances.  Table 2 lists the aircraft payload.  Figure 1 
shows views of two ships whose exhaust was used as the basis for MSc aerosol perturbation. 
 
WORK COMPLETED 

 
Theoretical basis for convective invigoration due to increased aerosol concentration 
The potential effects of increased aerosol loading on the development of deep convective clouds and 
resulting precipitation amounts are studied by employing the Weather Research and Forecasting (WRF) 
model as a detailed high-resolution cloud resolving model (CRM) with both detailed bulk and bin 
microphysics schemes. The bulk microphysics scheme incorporates a physically based 
parameterization of cloud droplet activation as well as homogeneous and heterogeneous freezing in 
order to explicitly resolve the possible aerosol-induced effects on the cloud microphysics. These 
parameterizations allow one to segregate the effects of an increase in the aerosol number concentration 



into enhanced cloud condensation nuclei (CCN) and/or ice nuclei (IN) concentrations using bulk 
microphysics. The bin microphysics scheme, with its explicit calculations of cloud particle collisions, 
is shown to better predict cumulative precipitation.  Increases in the CCN number concentration may 
not have a monotonic influence on the cumulative precipitation resulting from deep convective clouds. 
We demonstrate that the aerosol-induced effect is controlled by the balance between latent heating and 
the increase in condensed water aloft, each having opposing effects on buoyancy. It is also shown that 
under polluted conditions and in relatively dry environments, increases in the CCN number 
concentration reduce the cumulative precipitation due to the competition between the sedimentation 
and evaporation/sublimation timescales. The effect of an increase in the IN number concentration on 
the dynamics of deep convective clouds is small, but may act to suppress precipitation.  It is also 
shown that even in the presence of a decrease in the domain-averaged cumulative precipitation, an 
increase in the precipitation variance, or in other words, and increase in rainfall intensity, may be 
expected in more polluted environments, especially in most environments. 
 
A significant difference exists between the predictions based on the bin and bulk microphysics 
schemes of precipitation and the influence of aerosol perturbations on updraft velocity within the 
convective core.  The bulk microphysics scheme shows little change in the latent heating rates due to 
an increase in the CCN number concentration, while the bin microphysics scheme demonstrates 
significant increases in the latent heating aloft with increasing CCN number concentration.  This 
suggests that even a detailed two-bulk microphysics scheme, coupled to a detailed activation scheme, 
may not be sufficient to predict small changes that result from perturbations in aerosol loading. 
 
A continuous spectral aerosol-droplet microphysics model 
A two-dimensional (2-D) continuous spectral aerosol-droplet microphysics model has been developed 
and implemented into the Weather Research and Forecasting (WRF) model for large-eddy simulations 
(LES) of warm marine stratocumulus clouds. Activation and regeneration of aerosols are treated 
explicitly in the calculation of condensation/evaporation. The model includes a 2-D spectrum that 
encompasses wet aerosol particles (i.e. haze droplets), cloud droplets, and drizzle droplets in a 
continuous and consistent manner and allows for the explicit tracking of aerosol size within cloud 
droplets due to collision-coalescence. The system of differential equations describing 
condensation/evaporation (i.e. mass conservation and energy conservation) is solved simultaneously 
within each grid cell. The model is demonstrated by simulating a marine stratocumulus deck for two 
different aerosol loadings (100 and 500 cm−3), and comparison with the more traditional microphysics 
modeling approaches (both 1-D bin and bulk schemes) is evaluated. 
 



A Comprehensive Numerical Study of Aerosol-Cloud-Precipitation Interactions in Marine 
Stratocumulus 
Three-dimensional large-eddy simulations (LES) with detailed bin-resolved microphysics are 
performed to explore the diurnal variation of marine stratocumulus (MSc) clouds under clean and 
polluted conditions.  The sensitivity of the aerosol-cloud-precipitation interactions to variation of sea 
surface temperature, free tropospheric humidity, large-scale divergence rate, and wind speed is 
assessed.  The comprehensive set of simulations corroborates previous studies that (1) with 
moderate/heavy drizzle, an increase in aerosol leads to an increase in cloud thickness; and (2) with 
non/light drizzle, an increase in aerosol results in a thinner cloud, due to the pronounced effect on 
entrainment.  It is shown that for higher SST, stronger large-scale divergence, drier free troposphere, 
or lower wind speed, the cloud thins and precipitation decreases.  The sign and magnitude of the 
Twomey effect, droplet dispersion effect, cloud thickness effect, and cloud optical depth susceptibility 
to aerosol to aerosol perturbations (i.e., change in cloud optical depth to change in aerosol number 
concentration) are evaluated by LES experiments and compared with analytical formulations.  The 
Twomey effect emerges as dominant in total cloud optical depth susceptibility to aerosol perturbations.  
The dispersion effect, that of aerosol perturbations on the cloud droplet size spectrum, is positive (i. e., 
increase in aerosol leads to spectral narrowing) and accounts for 3% to 10% of the total cloud optical 
depth susceptibility at nighttime, with greater influence in heavier drizzling clouds. The cloud 
thickness effect is negative (i.e., increase in aerosol leads to thinner cloud) for non/light drizzling cloud 
and positive for a moderate/heavy drizzling clouds; the cloud thickness effect contributes 5% to 22% 
of the nighttime total cloud susceptibility.  Overall, the total cloud optical depth susceptibility ranges 
from ~0.28 to 0.53 at night; an increase in aerosol concentration enhances cloud optical depth, 
especially with heavier precipitation and in a more pristine environment. During the daytime, the range 
of magnitude for each effect is more variable owing to cloud thinning and decoupling.  The good 
agreement between LES experiments and analytical formulations suggest that the latter may be useful 
in evaluations of the total cloud susceptibility. The ratio of the magnitude of the cloud thickness effect 
to that of the Twomey effect depends on cloud base height and cloud thickness in unperturbed (clean) 
clouds. 
 
RESULTS 
 
Lebo, Z. and J.H. Seinfeld, Theoretical Basis for Convective Invigoration due to Increased Aerosol 
Concentration, Atmos. Chem. Phys., 11, 5407-5429 (2011).  
 
Lebo, Z.J. and J.H. Seinfeld, A Continuous Spectral Aerosol-Droplet Microphysics Model, Atmos. 
Chem. Phys. Disc., 11, 23655-23705 (2011). 



 
Chen, Y.C., L. Xue, Z.J. Lebo, H. Wang, R.M. Rasmussen, and J.H. Seinfeld, A Comprehensive 
Numerical Study of Aerosol-Cloud-Precipitation Interactions in Marine Stratocumulus, Atmos. Chem. 
Phys. Disc., 11, 15497-15550 (2011). 
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Figure 1.  In E-PEACE the CIRPAS Twin Otter probed the perturbation in marine stratocumulus 

(MSc) properties from ingestion of ship exhaust.  The upper panel shows the Moss Landing 
Marine Laboratory R/V Pt. Sur emitting well-characterized smoke from an on-board pair of Army 

battlefield smoke generators.  The lower panel shows a tanker, the exhaust from which was tracked 
for several hours in the overlying MSc. 


